Cross Sectional and Panel Estimation of Convergence

نویسندگان

  • John Goddard
  • John Wilson
چکیده

Cross sectional estimation of convergence regressions is known to be hazardous if there is convergence towards heterogeneous steady state values. In this paper, Monte Carlo methods are used to investigate the implications of this parameter heterogeneity problem. The cross sectional and pooled OLS estimators are compared with a panel estimator which is unaffected by heterogeneity. If there is heterogeneity, the latter outperforms both the unconditional and conditional cross sectional and pooled OLS estimators. JEL classification: C23, L11, O40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Labour Productivity Flow Across Industries?: Estimation Robust to Panel Heterogeneity and Cross Sectional Correlation

We consider labour productivity convergence between the US and the UK and France, using industry level data. We find evidence of panel heterogeneity, cross sectional correlation and weak evidence of productivity convergence at the industry level.

متن کامل

Semiparametric Trending Panel Data Models with Cross-Sectional Dependence

A semiparametric fixed effects model is introduced to describe the nonlinear trending phenomenon in panel data analysis and it allows for the cross–sectional dependence in both the regressors and the residuals. A pooled semiparametric profile likelihood dummy variable approach based on the first–stage local linear fitting is developed to estimate both the parameter vector and the nonparametric ...

متن کامل

Semiparametric Single-Index Panel Data Models With Cross-Sectional Dependence

In this paper, we consider a semiparametric single index panel data model with cross–sectional dependence, high–dimensionality and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence structure, we then establish some consistent closed–form estimates for both the unknown parameters an...

متن کامل

Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence Jia Chen and Jiti Gao Semiparametric Model Selection in Panel Data Models with Deterministic Trends and Cross-Sectional Dependence

In this paper, we consider a model selection issue in semiparametric panel data models with fixed effects. The modelling framework under investigation can accommodate both nonlinear deterministic trends and cross-sectional dependence. And we consider the so-called “large panels” where both the time series and cross sectional sizes are very large. A penalised profile least squares method with fi...

متن کامل

ISTITUTO DI STUDI E ANALISI ECONOMICA Convergence in per-capita GDP across European regions using panel data models extended to spatial autocorrelation effects

This paper studies the convergence of per-capita GDP across European regions over a fairly long period. Most of the works in the field are based on either cross-sectional or fixed-effects estimates. We propose the estimation of convergence in per-capita GDP across European regions by making use of panel-data models extended to include spatial error autocorrelation (Anselin, 1988; Elhorst, 2003)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000